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Rare diseases (RD) have a prevalence of not more than 1/2000 persons in the European population, and are characterised by the
difficulty experienced in obtaining a correct and timely diagnosis. According to Orphanet, 72.5% of RD have a genetic origin
although 35% of them do not yet have an identified causative gene. A significant proportion of patients suspected to have a
genetic RD receive an inconclusive exome/genome sequencing. Working towards the International Rare Diseases Research
Consortium (IRDiRC)’s goal for 2027 to ensure that all people living with a RD receive a diagnosis within one year of coming to
medical attention, the Solve-RD project aims to identify the molecular causes underlying undiagnosed RD. As part of this strategy,
we developed a phenotypic similarity-based variant prioritization methodology comparing submitted cases with other submitted
cases and with known RD in Orphanet. Three complementary approaches based on phenotypic similarity calculations using the
Human Phenotype Ontology (HPO), the Orphanet Rare Diseases Ontology (ORDO) and the HPO-ORDO Ontological Module (HOOM)
were developed; genomic data reanalysis was performed by the RD-Connect Genome-Phenome Analysis Platform (GPAP). The
methodology was tested in 4 exemplary cases discussed with experts from European Reference Networks. Variants of interest
(pathogenic or likely pathogenic) were detected in 8.8% of the 725 cases clustered by similarity calculations. Diagnostic hypotheses
were validated in 42.1% of them and needed further exploration in another 10.9%. Based on the promising results, we are devising
an automated standardized phenotypic-based re-analysis pipeline to be applied to the entire unsolved cases cohort.
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INTRODUCTION
Rare diseases (RD) are defined in Europe as those affecting not more
than 1/2000 persons in the European population [1]. 72.5% of RD
have a genetic origin [2], although for 35% of them a causative gene
has not yet been identified [3]. Rare diseases are characterised by
the difficulty in obtaining a correct and timely diagnosis, because of
their rarity, scarcity of patients and inequalities in access to expertise
[4]. During their diagnostic journey, patients may receive a clinical
diagnosis [5] (i.e., a name for their disease) or remain undiagnosed.
For genetic disorders, identifying and characterising the underlying
molecular basis is crucial for establishing a specific diagnosis and
implementing an optimal therapeutic approach.
Solve-RD (Solving the unsolved rare diseases) [6, 7] is a

European-funded research project that aims to molecularly solve
unsolved cases defined as those without a molecular diagnosis
after undergoing WES (whole exome sequencing), by using
different data and re-analysis approaches [8] and with the
ultimate goal of assigning a clinical diagnosis to yet undiagnosed
patients [9]. Solve-RD builds upon a core group of four European
Reference Networks [10] (ERNs: ERN-ITHACA, ERN-RND, ERN-Euro
NMD, ERN-GENTURIS) which annually see more than 270,000 RD
patients, and that contribute unsolved patients data. Amongst the

approaches explored within this project, we present a methodol-
ogy based on phenotypic similarity calculations among solved/
unsolved cases (patients) and known RD. Indeed, it is well
demonstrated [11–15] that using a phenotypic approach relying
on phenotypic annotation comparisons is useful in gene
prioritisation and diagnosis research [16–20], as for example
Phen2Disease or LIRICAL, that compare patient phenotypes to
annotated diseases. However, producing good quality phenotype
annotations is burdensome for clinicians and there is room to test
other approaches (i.e., Natural Language Processing, Artificial
Intelligence, Machine Learning, Deep Neural Networks and entity
recognition in clinical narratives) [15–20]. For the purpose of this
study, we collected phenomic and genomic data from unsolved
RD cases in a standardized and machine-readable format, and ran
a series of one-to-all comparisons, including cases and known RD
in order to raise diagnostic hypotheses based on re-analysis of
candidate causative variants. These were then resubmitted to
clinicians for further investigation and validation. Ultimately, this
led to the identification of a formerly undescribed disease, or to
the identification of unreported manifestations of known RD. The
final goal was to return a clinical diagnosis to the patients. This
article aims to describe the methodology used in our phenotype
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similarity-based pipeline by providing illustrative examples of its
application.

MATERIALS AND METHODS
Data management
The overall Solve-RD data management is documented [7, 8]. Briefly, after
submission to the RD-Connect GPAP, data are shared within the Solve-RD
consortium via the European Genome-Phenome Archive (EGA) [25]. We
retrieved data for our analysis through a cloud-based central database RD3
(rare disease data about data) using the MOLGENIS open-source data
platform [26]. RD-Connect GPAP ensures data standardisation, pseudony-
misation and harmonisation according to GA4GH-approved standards
(Global Alliance for Genomics and Health) [27], in a computer-readable
format (Phenopacket) [28] which enables exchange of phenotypic and
family information.

Ontologies used
To ensure data standardization, the Human Phenotype Ontology (HPO)
[22], the Orphanet Rare Disease Ontology (ORDO) [23] and HOOM (HPO-
ORDO Ontological Module) [24] were used. HPO provides a standardized
vocabulary of phenotypic abnormalities encountered in human disease.
For this study, we used the HPO 2020-10-12 release (including 15,656
unique HPO terms). ORDO is a structured vocabulary for rare diseases
derived from the Orphanet knowledge base including relationships
between diseases and between diseases and genes. This study uses
ORDO v3.1, Dec 2020 including 9338 active clinical entities. Clinical entities
in ORDO are designated in this paper by their unique identifier in
Orphanet, the ORPHAcode. HOOM is an ORDO module that qualifies the
association between a clinical entity and its HPO-based phenotypic
abnormalities according to their frequency. For this study, we used the
version 1.5 (Dec 2020) including 1,867,364 ORDO-HPO associations. Data in
ORDO and in HOOM are manually curated and expert-validated.

Data and models employed
Study population. Solve-RD collects phenomics and genomics data from
patient cohorts [7] and releases them as data freezes. The present study

uses data selected from the 2020 Data Freeze 1 which contains data
(phenotype, pedigree, genotype) of 8370 cases affected by a RD and
submitted by the four ERNs [7] to the RD-Connect Genome-Phenome
Analysis Platform (GPAP) [21]. This initial dataset contained 1101 “solved
cases” (patients annotated as “solved” in the GPAP platform by the data
submitter) and 7269 “unsolved cases” (patients annotated as “unsolved”
by the data submitter, therefore with an inconclusive whole exome/
genome sequencing WES/WGS result). Our study population was
built by filtering the cases as depicted in Fig. 1A: (i) 644 cases with no
causative gene were removed from the solved cases population and
added to the unsolved cases population, as cases without a causative
gene are considered unsolved in this analysis; (ii) cases without
phenotype annotations that are not suitable for a phenotypic comparison
were removed from both populations (72 solved and 3289 unsolved
cases). Thus, the resulting final population included 385 solved cases
and 4624 unsolved cases (4.6% and 55.2% of the data freeze 1
respectively).

Reference data. Reference data is obtained after applying the following
filtering to ORDO (Fig. 1B) where “groups of disorders” and “inactive clinical
entities” were removed (see Orphanet’s definitions in Additional informa-
tions file). Of the resulting active entities (6171 disorders and 993 subtypes
of disorder) only entities associated with (a) at least one gene (3789
entities) and (b) at least one HPO term (3955 entities) are kept. Thus, the
resulting 2259 entities (ORPHAcodes) which satisfy (a) and (b) served as
reference data (31.5% of Orphanet active clinical entities).

Phenotypic similarity methods/algorithms
During the Solve-RD project, Köhler et al. developed runSolveRD.jar, a
single JAR executable file packaging eight methods/algorithms [29–34]
capable of computing similarity measures [31]. These methods/algorithms
calculate one-to-all ranked similarities between each case with reference
RD and also amongst all cases. Similarity scores range from 0 to 1 (where 1
is the closest point): for each case, case-case and case-disorder associations
are ranked by decreasing similarity score. For the purpose of this study,
from the 8 algorithms provided, we selected Resnik symmetric method
due to its best performance [35] and the 50-first results were retrieved,
with no limiting similarity thresholds.

Fig. 1 Data filtering workflow for cases and Orphanet data. A Filtering of cases from data freeze 1 cohort extraction, definition of the initial
population by redefining solved and unsolved cases. Obtention of the final study population after exclusion of cases with no HPO annotation.
B Filtering of clinical entities of Orphanet database for active clinical entities, preparation of the final reference data (ORPHAcodes).
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Workflow design
As schematized in Fig. 2, after having obtained similarity calculations we
applied a workflow which is divided into three complementary approaches
A, B and C, each using a triggering case (solved case) as a starting point for
the purpose of validating the methodology (Fig. 3). Through in-house
Python 3.8 scripts, each approach generates a cluster around each point of
interest thus maximizing the one-to-all phenotypic similarity explorations.
Each point, which is a case or an ORPHAcode related to the triggering case,
can hold genetic information if it exists and a list of genes is submitted to
RD-Connect GPAP for identification of candidate variants [8].

A—ORPHAcodes around the triggering case. This approach aims to check
that the solved case phenotype (i) clinically fits a known RD phenotype
(ORPHAcode) retrieved with the 50-first similar ORPHAcodes and (ii) is
caused by mutations in the same gene (A1). In case of phenotype
inconsistency, the genes associated to the first 50 similar ORPHAcodes are
re-analysed for the triggering case (based on data present in RD-Connect
GPAP) to eventually detect further candidate pathogenic variants (A2).

B—Cases around the triggering case. This approach aims to look for
candidate pathogenic variants in the solved case gene in the 50-first
similar cases clustered around the triggering case (B1). Variants in genes
related to the 50-first similar ORPHAcodes clustered around each case in
the cluster are further examined when no variant in the triggering case-
related gene is found before (B2).

C—Cases around ORPHAcodes similar to the triggering case. This approach
aims to look for candidate pathogenic variants in the 50-first similar cases
clustered around the ORPHAcode corresponding to the triggering case’s
gene. Variants in the triggering case gene are looked for in the cluster (C1),
then variants in genes related to the 50-first similar ORPHAcodes around
each case within the cluster are further examined when no variant in the
triggering case’s gene during stage C1 is found (C2).

Variant prioritisation methods
Genes retrieved by similarity results in the A, B and C approaches, were
analyzed by RD-Connect GPAP using genomic data from all individuals
included in the study as described in Matalonga et al. [8]. Genomic data
was filtered by (i) rare variants (MAF < 0.01 according to gnomAD and
MAF < 0.02 according to RD-Connect GPAP internal frequency), (ii) with a

high (truncating) or moderate (amino acid change) impact at the protein
level according to Variant Effect Predictor (VEP) from Ensembl and (iii)
falling within a gene included in the specific gene list per individual
generated using similarity results. Variants were annotated with the RD-
Connect GPAP annotations [21] including ClinVar and ACMG (InterVar)
clinical significances.
Variants were then filtered based on their clinical significance and only

pathogenic and likely-pathogenic variants according to ACMG guidelines
[36] were further submitted to referring clinicians for final evaluation and
discussion during a multidisciplinary meeting.

Example case selection
To test the relevance of the designed workflow, four solved cases were
selected as triggering cases in order to explore four different situations:

● A triggering case clinically similar to an ORPHAcode associated with
the same causative gene (PX_8147689, KIF5A-related phenotype).

● A triggering case clinically similar to an ORPHAcode associated with
the same causative gene but presenting an unexpected phenotypic
variation compared to that of the ORPHAcode (PX_2811577, SPAST-
related phenotype).

● A triggering case not clinically similar to the expected gene-related
ORPHAcode (PX_2354306, TBL1XR1-related phenotype).

● A triggering case whose causative gene is associated with more than
one similar ORPHAcode (PX_1162604, CASQ1-related phenotype).

The results of the 3-approaches workflow triggered by these four cases
were submitted to a group of clinicians from participating ERNs for a final
evaluation during four workshops. Errors in the phenotypic annotations
detected during the discussions were corrected by the clinicians and the
whole workflow was re-run for those cases.

RESULTS
The number of pathogenic or likely pathogenic variants detected
is summarized in Table 1.
The A1 approach is aimed at validating that the phenotypic

similarity calculation was able to find the corresponding rare
disease, and at checking the clinical consistency between the

Fig. 2 Whole analytic process: Cases are submitted in RD-Connect Genome-Phenome Analysis Platform (GPAP) then processed for
phenotypic similarity calculations. From selected genes, variant candidates detected by GPAP after re-analysis and filtration steps are added
to phenotypic/genotypic results. Using this data, Cytoscape JS computes networks capable of providing to clinicians a visual interpretation of
cases’ clusters.
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patient phenotypic description and that of the rare disease, thus
confirming the diagnosis. Similarity calculations were able to find
the candidate clinical diagnosis in 3 out of 4 cases within the first
30 results (at positions 11, 19 and 27 for KIF5A-, CASQ1- and SPAST-
related cases respectively). The TBL1XR1-related ORPHAcode
(Pierpont syndrome, ORPHA:487825) however was not found in
the first 50 results triggered by the TBL1XR1-related case, because
of its inaccurate phenotypic annotation. After reannotation by the
clinician, A1 was re-run and the correct clinical diagnosis was
found at rank 15.
When we looked at the clinical consistency between the

triggering case and its associated ORPHAcode, the KIF5A-related
triggering case showed very good clinical consistency with the
HPO annotations of the corresponding ORPHAcode Autosomal
dominant spastic paraplegia type 10 (ORPHA:100991) [37],
subsequently confirmed by the clinician. However, SPAST- and
CASQ1- related triggering cases did not completely correspond to
the HPO annotations of their matching ORPHAcodes Therefore,
we formulated the hypothesis that a second concurrent genetic
anomaly could be at the origin of the cases with atypical
phenotypic annotations. The A2 approach performed for the
SPAST-related case suggested that a homozygous deletion in
LDHA, causing Glycogen storage disease due to lactate dehy-
drogenase M-subunit deficiency (ORPHA:284426) [38] deserved
further investigation and could contribute to the phenotype of
this case, one that could not be diagnosed as a Pure spastic
paraplegia type 4 (ORPHA:100985).
As for the CASQ1 triggering case, only one out of two possible

ORPHAcodes associated with CASQ1 corresponding disorders
(ORPHA:88635) was found based on phenotypic similarity.
Discussion with clinicians led to the conclusion that, because of
lack of perfect consistency between the case and the possible
diagnosis, other genetic alterations could be involved in the
phenotype. The A2 approach performed for this case retrieved
another variant in the TTN gene, classified in ClinVar as “conflicting
interpretations of pathogenicity”; the case is currently undergoing
further investigation.

In conclusion, running phenotypic similarity calculations
through approach A allowed us to unveil phenotypic description
quality issues and highlighted the need for further analysis in
order to provide a clinical diagnosis before considering cases as
solved.
The B1 approach used information from triggering cases to help

solve the unsolved cases in the same phenotypic cluster.
Interesting candidate variants were found for three unsolved
cases related to SPAST-, TBL1XR1- and KIF5A- triggering cases. A
variant was found in an unsolved case related to CASQ1-triggering
case, but it was not available in ClinVar and was likely an artefact.
Another variant was found in a solved case related to the SPAST-
triggering case, confirming its clinical diagnosis.
After discussion with clinicians, the KIF5A candidate variant

(c.226 G > C, p.Ala76Pro, (Supplementary Table A and B)) seemed
like a promising non-sense variant, even if not available on
ClinVar. It is located in the part of the gene coding for the protein
motor region and it was found in a case at rank 16 of similarity,
with a phenotypic description of pure spastic paraplegia.
Despite the fact that the parent’s DNA was not available and no
functional analysis could be carried out, this finding will likely
solve the case.
The SPAST missense variant identified (c.134 C > A;p.Pro45Gln,

(Supplementary Table A and B)) in an unsolved case within the
SPAST cluster bears conflicting evidence of interpretation in
reference databases and it does not segregate in the other
symptomatic siblings; therefore, this case could not be solved by
this approach. The variant found in the TBL1XR1 gene (c.1184 T > A
(p.Tyr395Phe)) for the unsolved case in the TBL1XR1 case
phenotypic cluster did not explain the typical Amyotrophic lateral
sclerosis (ALS) phenotype of the case based on the feedback from
the clinical expert, although it is described as likely pathogenic,
pointing out the need for variant reclassification.
The B2 approach further examines the unsolved cases retrieved

in B1 approach, analysing the genes involved in the first 50
phenotypically-related ORPHAcodes of each unsolved case. In
both SPAST- and KIF5A- clusters, a variant of interest (c.136 G > T

Fig. 3 Schema of the three complementary approaches A, B and C. A—ORPHAcodes around the triggering case, B—Cases around the
triggering case and C—Cases around ORPHAcodes similar to the triggering case.
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(p.Asp46Tyr)) was found in the GALC gene, known to be
causative of Krabbe disease (ORPHA:487) [39]. This could
partially explain the case’s phenotype, however additional
information on the case’s evolution was not available to confirm
or to infirm the diagnostic hypothesis. All the other selected
variants were finally discarded because either classified as likely
benign or considered not explanatory of the phenotypes by the
clinicians.
In conclusion, the B approach yielded results were modest but

potentially allowed for two unsolved cases to be explained,
reconsidering the phenotypes from a new perspective because of
the unexpected variants found.
The C approach aimed at analysing the clusters around the

ORPHAcode related to the gene of the triggering case. The C1
approach was possible for clusters around ORPHAcodes related to
all triggering cases except TBLX1R1, because there was no
ORPHAcode found in the phenotypic cluster at the first analysis
(A1) when the workshops were conducted. Five SPAST pathogenic
variants were found in 5 solved cases clustered around Autosomal
spastic paraplegia type 4 (ORPHA:100985) and were therefore
considered as positive confirmations of our analysis. Five KIF5A
candidate variants were found in four unsolved cases in a SPG10
(ORPHA:100991)-centred cluster. Despite their classification as
likely pathogenic in ClinVar, they were discarded because they are
not in the motor region of KIF5A gene, suggesting that they might
have been erroneously classed as likely pathogenic in the
reference databases. In addition, for one unsolved case clinically
consistent with SPG10 phenotype, a variant (c.1373 C > T,
(p.Ser458Phe) was identified. This case has been published, and
although the variant in KIF5A was discussed by the authors, the

case was still labelled as unsolved [40]. Indeed, clinicians agreed
on the diagnostic hypothesis but suggested that the study of
further cases is needed before certifying the variant’s pathogeni-
city. No variants were found in the CASQ1-related ORPHAcodes-
centric clusters.
In the C2 approach, each unsolved case belonging to the

reference ORPHAcode’s phenotypic cluster, and not explained
by C1 approach, is reanalysed for the genes causative of its top
50 most similar ORPHAcodes. In the ORPHA:100991 (SPG10)
phenotypic cluster, a pathogenic variant in VCP, known to be
associated with amyotrophic lateral sclerosis [41] was found for an
unsolved case, which appeared consistent with the case’s clinical
presentation. As the initial phenotypic description was limited, it
was decided to perform the A approach after the case was
reannotated by the clinicians. ORPHA:803 (ALS) was then found at
rank 24 by the similarity calculation. A diagnostic confirmation for
this case is expected after the case’s re-examination.
In conclusion, the C approach identified a number of candidate

variants that triggered re-investigation of cases both from a
clinical and molecular point of view.
Overall, the phenotypic similarity workflow initiated with 4

exemplary cases retrieved a total of 725 cases (14.5% of the study
population) in the first-50 ranks of the workflow approaches and
these were further analysed for variant detection. Variants of
interest (pathogenic or likely pathogenic) were found in 64 out of
these 725 cases (8.8%) thus leading to the formulation of
diagnostic hypotheses. These hypotheses were validated for
42.1% (27/64) of those cases. In 7 cases (10.9%) the diagnostic
hypotheses raised were considered as promising by the clinicians,
but require additional investigation.

Table 1. Summarized results of the A, B and C approaches for the 4 triggering selected cases.
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DISCUSSION
The International Rare Disease Research Consortium (IRDiRC)
roadmap 2017-2027 challenged the community with three goals,
of which Goal 1: All patients coming to medical attention with a
suspected rare disease will be diagnosed within one year if their
disorder is known in the medical literature; all currently undiagno-
sable individuals will enter a globally coordinated diagnostic and
research pipeline [3]. These “currently undiagnosable individuals”
are defined in Solve-RD as those having undergone an
inconclusive WES. The approach proposed in this paper consists
in a combination of phenotypic similarity calculations and
genomic variant prioritization for re-analysis, based on the
hypothesis that using structured, standardized information about
solved cases (Phenopackets) and about RD (ORPHAcodes), could
help raising diagnostic hypothesis. Other large-scale studies, such
as for instance the UK 100,000 Genomes Project [42] have
previously demonstrated the potential of phenotype‐driven
variant prioritization to improve diagnosis in RD [12, 13]. The
proposed workflow allows for the exploration of all the clusters
emerging from a systematic one-to-all comparison cascade
triggered by solved cases. By selecting exemplar cases, and
discussing the results with experts participating in the project, we
aim to propose in the future a systematic phenomic-genomic
analytical pipeline that can be actionable from any node in the
phenotypic clusters, and not only from triggering cases. Despite
the fact that our study showed promising results, it has some
limitations. Firstly, HPO annotations were not complete: all cases
which are not phenotypically annotated (40% in the Solve-RD
Data Freeze 1) could not be included in similarity computation,
even if the case is associated with an identified causative gene.
Furthermore, not every ORPHAcode in the Orphanet knowledge
database already has phenotypic annotations, as manually curated
annotations are a long, ongoing process, and hence some could
not be used by similarity calculations. Nevertheless, it is clear that
the process can become more effective as the study population
grows and phenotypic/genotypic annotations are added and
improved.
Secondly, most of RD are multi-systemic disorders, however we

have observed that phenotypic annotations are often influenced
by the annotating physician’s medical specialty, thus a bias in
calculations could be introduced because of missing discriminant
HPO terms. Similarly, we have noticed the trend of using a set of
“coarse grain” HPO terms to the detriment of lower and more
specific HPO terms, compromising the specificity of the case
annotation. 26.4% (1320/5009) of the study population were
annotated with less than 5 HPO terms, which constitutes a major
limitation, since the best Resnik’s performances are obtained for
cases annotated with 10 to 40 HPO terms (see Additional
informations file). Taken together, these issues underline the
need to raise awareness on how good-quality deep phenotyping
is important for improving the results of this kind of approach
Integration of genomic data is key for clinicians and researchers to
evaluate and further validate diagnosis hypotheses coming from
similarity results. This is why we decided to integrate results from
similarity calculations together with a downstream analysis of the
genomic data (WES or WGS) submitted to the project. To enable
this type of high-throughput analysis we used big data
technologies and built on the programmatic analysis pipeline of
the RD-Connect GPAP. This methodology enables the user to
rapidly filter genomic data from thousands of datasets thanks to a
specific gene list generated for each case and each approach as an
output of the similarity calculations. A list of candidate variants
based on any pre-defined filtering step is thus produced: in this
case rare variants with a high or moderate impact at the protein
level. The whole process is scalable and can be automated.
Current limitations lie in data interpretation as the list of candidate
variants can be fairly long (>10 variants per case) in approaches
comparing up to 50 individuals / disease entities. The elevated

number of cases assessed made it impossible for clinicians to
evaluate all variants, therefore we had to restrict the submission of
results to variants classified as likely pathogenic or pathogenic
according to ACMG criteria, missing variants of uncertain
significance that could be re-classified as pathogenic after expert
evaluation.
Variants of interest were identified in 8.8% (64/725) of all cases

found by phenotypic similarity calculations, leading to diagnostic
hypotheses. Accessibility to cases and family data will, in these
cases, be one of the major issues in the validation of the
hypothesis provided and thus the final diagnosis of the case. In
46.8% (30/64) of cases, hypotheses were formulated but a
conclusion could not be raised for various reasons such as
inconsistency between the case’s phenotype and the hypothesis
formulated, difficulties in recalling cases, or the detection of
misclassified variants. Indeed, misclassifications in ClinVar and/or
ACMG guidelines were observed for two variants. We validated
our approach by submitting preliminary results of four selected
triggering cases to a group of clinicians from ERNs during four
workshops, where cases and phenotypic associations were
discussed. The combination of the semi-automated variant
prioritization pipeline based on phenotypic similarity calculation
with the expertise of clinicians from ERNs has underlined the
capacity of this methodology to deliver diagnostic hypotheses
that clinicians can use to orient their diagnostic process. A tool
exploiting this methodology is therefore being developed and will
be published in the near future. Finally, during workshops, it also
emerged the need to provide a user-friendly tool for visualizing
results. Hence, we are developing a Cytoscape JS [43] based tool,
named OrphaScape. OrphaScape, that will be the object of a
future publication, will be a valuable tool for exploring clusters
related to cases and/or ORPHAcodes surrounding a case of
interest, and will hopefully help in guiding case selection for
diagnosis, investigation, hypothesis and analysis.

DATA AVAILABILITY
The datasets analysed during the current study are available as phenopackets at the
EGA (Datasets EGAD00001009767, EGAD00001009768, EGAD00001009769, and
EGAD00001009770, under Solve-RD study EGAS00001003851).
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